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IN T H E  S U R F A C E  L A Y E R  

Contaminat ion of the a t m o s p h e r e  by harmful  exhausts  f r o m  industr ia l  e n t e r p r i s e s  and t r a n s p o r t  v e -  
h ic les ,  contaminat ion by rad ioac t ive  i so topes ,  the t r a n s p o r t  of pollen and seeds  of plants ,  the con t rove r sy  
on bac te r ia ,  the use of poisonous chemica l s  in agr icu l tu re  and f o r e s t r y  - these  a r e  some of a wide range  
of p rob l ems  for  which a knowledge of the 1 aw of turbulent  diffusion and d i spe r sa l  of the contaminant  in the 
sur face  l aye r  of the a t m o s p h e r e  is v e r y  impor tant .  

For  studying these  laws one uses  e i ther  the s e m i e m p i r i c a l  equation of turbulent  diffusion (then the 
wind ve loc i ty  and the coeff icient  of diffusion a re  given in the fo rm of functions of spat ia l  coordinates)  or  
the s ta t i s t i ca l  approach,  in which the distr ibution of the impuri ty  undergoing diffusion obeys a no rma l  d is -  
t r ibut ion law, while for  de termining  the c h a r a c t e r i s t i c s  of the distr ibution some p rope r t i e s  of the turbulent  
flow a re  used. The f i r s t  approach  is m o s t  fully developed in [1-4], and the second has been extensively  used 
in [5-6]. A detai led discuss ion of these  p rob l ems  can be found in [7, 8]. 

Usually the final decis ion about using one or the other  scheme of computat ion is t aken  only a f t e r  com-  
paring the computat ion with the expe r imen t  [9]. All theore t ica l  e s t i m a t e s  by both methods a re  obtainedwith 
an accu racy  within some constant  f ac to r s  which a r e  chosen with the aid of the exper imen ta l  data. Both me th -  
ods should be r e g a r d e d  essen t ia l ly  s e m i e m p i r i e a l ,  but in some cases  the s ta t i s t ica l  method p e r m i t s  one 
to desc r ibe  the phenomena in g r e a t e r  detail .  Nonetheless ,  it is not a lways poss ib le  to make an unambiguous 
choice of the method of descr ip t ion.  

The detai led ana lys i s  p re sen ted  in [9] and a compar i son  of expe r imen ta l  r e su l t s  with the computat ions 
shoW that t he  cur ren t ly  avai lable  expe r imen ta l  data can be descr ibed  by s eve ra l  exis t ing models  with an 
accu racy  up to a fac tor  of 2. The re l iab i l i ty  of the values  of the contaminant  concentra t ion and the density 
of deposit ion, m e a s u r e d  in f ield conditions,  is not be t te r  than • 50% [10]. 

T h e r e f o r e  it is sufficient  to c a r r y  out the theore t ica l  ana lys is  of the law of diffusion of a contaminant  
in the su r face  l aye r  of the a t m o s p h e r e  using the s imp le s t  model and then a t tempt  to t r ace  in it quali tat ive 
d i f ferences  in the behavior  of the diffused contaminant  depending on the meteoro logica l  conditions, physical  
c h a r a c t e r i s t i c s  of the contaminant  (p r imar i ly  the r a t e  of sedimentat ion) ,  and the conditions of i ts  injection 
into the a tmosphe re  (height of the source  above the ground and the duration of its operat ion,  direct ion of 
motion re la t ive  to the wind, and so forth).  According to the p r e s e n t  s tate  of knowledge, the coeff icient  of 
turbulent  diffusion in the su r face  l aye r  of the a tmosphe re  is independent of t ime  for  t ime per iods  l a r g e r  
than the Lagrangian  t ime  sca le  [6, 8]. 

If  the effect  of mo lecu la r  in terac t ion  is d i s regarded ,  then the equation descr ib ing the diffusion p ro -  
ce s s  coincides with the s e m i e m p i r i c a l  equation of turbulent  diffusion [8] 

Oc Oc Oc Oc 02c O~c 02c 
0--~- +u ~ - +  v ~ -  w-~[ = k ~ - ~  + k~-~-y~ + k-~-~ +/(~, y, z, t). (1) 

Here  c is the concentra t ion of the diffusing subs tance  at  the point (x, y, z) at t ime t; u, v a r e  the c o m -  
ponents of wind along x and y axes, r e spec t ive ly ;  w is the r a t e  of sedimenta t ion  of the diffusing substance;  
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kx, k~, k z a r e  the turbulen t  diffusion coeff icients  along the di rect ions  x, y, z ; f  (x, y,  z, t) is the sou rce  
functmn descr ib ing  the opera t ion of the gene ra to r .  

In a e ro so l  ana lys i s  the g e n e r a t o r  moves  a l m o s t  perpendicu la r  to the mean  wind di rec t ion (x axis) .  
The z axis  is d i rec ted  ve r t i ca l ly  upward  f r o m  the ground level .  The or igin of the coordina tes  l i es  a t  the 
point f r o m  which the gene ra to r  m oves .  Fo r  a constant  output of the gene ra to r  the sou rce  f u n c t i o n f  (x, y,  
z,  t) has the following fo rm:  

? (z, y, ~, t) = 0 (t < 0, t > t~). (2) 

Here  Q is the output of the g e n e r a t o r  (g /sec) ,  U 1 is i ts  speed  (m/ see ) ,  5 (x) is the delta function, ~t 
i s  the t ime of opera t ion  of the g e n e r a t o r  (see),  and h is the height of the source  (m). 

The solution of Eq.  (1) for  the initial  and boundary conditions c-~ 0 for  x, y-~  ~=~, z-~r and 

0c 
kz ~ z  "~ wc = ~c for z = O, c (x, y, z, O) = O 

can be obtained by the method d i scussed  in [11]. We a s s u m e  that the flux of the contaminant  a t  the ear th ,  s 
su r face  due to turbulent  diffusion is ze ro ;  then 

( d e /  d~)z= ~ = 0 

The solution of the p rob i em  has  the f o r m  

t O0 r~o 

0 --oo 0 

(3) 

(4) 

(5) 

Let us analyze  the behavior  of the concentra t ion of the imponderable  contaminant  at  the su r face  (z = 
0) in g r e a t e r  detail .  Let  w =z =v =0.  The condition v =0 can be fulfil led by an app rop r i a t e  choice of the 
coordinate  sy s t em .  Substituting (2) and (5) in (4) and in tegra t ing with r e s p e c t  to ~, 7, and ~,we get  

c ( x , y ,  0, t ) = q ( x , y ,  0, t ) - - q ( z , y ,  0, t _ t ~ )  (6) 
t 

I ( (x - ~zT)2 [Y--  U l ( t - -  T)]2 h2 ~ 

9 
(7) 
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Since 
-r 
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the solution of (7) i s  o f  the f o r m  

- [ ) q (~, y, 0, t) =-~-A ~ 2-v~ (k2A)-v, c Ac | ( -  A g ~ -  ct + eat . ( _  A + (s) 

where  2r 

u s rYt~ t a2 x~ ' ( y -  Ult)~ h 2 h ~ xu U1 (y - -  f l i t)  C~ = zr " ~ y  , r (x) __ ~ e-V" t" dr, 

If  we neglec t  the reg ion  immedia te ly  adjoining the cons ide red  band, whose width is l =Ult  1, then the 
second t e r m  in fo rmula  (6) can be omit ted.  Then the sur face  concentra t ion f r o m  the gene ra to r  moving p e r -  
pendicular  to the wind is desc r ibed  by Eq. (8). For  p rac t i ca l  computat ions  it is poss ib le  to der ive and use  
s i m p l e r  r e la t ions  ins tead  of (8), which approx imate  this dependence with an accuracy  ,,~10%. This  is ob- 
tained in the following way.  For  h =  0 the m a x i m u m  concentra t ion is  obtained for  tm  = x / u  +y/U~, where in  
a t  the point t m  the following re la t ions  hold: 

B - - A o C ~ O ,  Ao(tm) C x'~" u s / kyu ~ ~-1 

Expanding the function B-AoC in Tay lo r  s e r i e s  around t m and r e s t r i c t i ng  the expansion to second-  
o rde r  t e r m s , w e  get  

_ ( t  - -  tm)rt 2 k x X  / k y u  ~" 

The e r r o r  in t roduced by rep lac ing  A 0 (t) by i ts  value A 0 (tm) in the neighborhood of the point t m �9 
~ 44"4~.6 is c lose  to 

A0(~) - L T \ ~ - + ~ ]  j 

and d e c r e a s e s  with the inc rease  in the distance f r o m  the source  (for k x = k y  =5 m2/sec ,  U 1 =3 m / s e e ,  u=  
2 m / s e e  at a dis tance of 1 km f r o m  the line of motion of the gene ra to r , the  e r r o r  due to this substi tut ion 
is not m o r e  than 9%). I t  is not difficult to show that  

Ao ( t m )  - -  C t  m 
is - -  _V.-i-~ < o  

and starting from distances of a few hundred meters [#I > 1. As a consequence # ( - ~ ) ~ i .  The variation 
of t in the range tm~=(z 444~-6.6 does not affect the above estimates i f  y > ~ .  This last condition is 
clearly fulfil led in practice; therefore the replacement of the probability integral by unity is entirely ad- 
missible. 

Since the following inequalities hold for the argument of the second probability integral in (8): 

Ao (tin) -~- Ct m Ao (tin) -}- Ct m 
' V ~  >0 ,  ~ >>~ 

the second t e r m  in fo rmula  (8) can be eva lua ted  if we make  use  of the asympto t i c  expansion of the integral .  

Fo r  (x>> 1) 
.~ exP(--l/~ x2) 

( -  x) ~ V ~ -  z 

the second t e r m  is  much  s m a l l e r  than the f i r s t  for  all  p a r a m e t e r s  that a r e  of in te res t  in p rac t i ce ,  and f o r -  
mu le s  (6) and (8) a r e  s impl i f ied:  

n2~o~Q) (kxkukz)"~/" exp - - ( t - - t )  ~ c (z, y, 0, t) .~ q (x, y, 0, t) ~-, ~ 2~ (9) 

Hence it follows that  for  given ky /k  x and u /U l the curves  for  the va r i a t ion  of concentra t ion with t ime 
a r e  s i m i l a r ,  ff the t ime sca le  is chosen as  4-kxxu-3 and the concentra t ion scale  as c (x, y, 0, tm).  

Computat ions  f r o m  fo rmula  (8) for  k x =ky =2 k z equal  to 0.5, 1.5, and 5 m ~ s e e ,  U =1, 2, and 4 m / s e e ,  
and U 1 =3 m / s e e  showed that  independently of the d is tances  x and y (computat ion c a r r i e d  out for  x = 1, 3, 
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5, 7, 10 km and y = l  km) for  a given wind veloci ty  all  the laws of va r i a t i on  
of concent ra t ion  in the coordinates  

q(x, y, O, t) t - - t  
q (x, y, O, tin)' T = V~xxum_, T 

a re  s ta ted  by a single curve .  The continuous curves  1, 2, 3 in Fig. l a  c o r -  
r e spond  to the va lues  u = l ,  2, 4 m / s e e .  

The r e s u l t s  of the computat ion f r o m  formula  (9) for  the s ame  va lues  
of the p a r a m e t e r s  a r e  also shown in the same  figure by the dashed l ines  (curve 

1' co r r e sponds  to curve 1 and so on). The m a x i m u m  divergence between the cor responding  curves  for  con-  
centra t ion equal to 0.1 of its m a x i m u m  value does not exceed  15-25%. This  inaccuracy  is cer ta in ly  c o m -  
pensa ted  for  by the s impl ic i ty  of the computat ion.  Adding A'Q (t m) (t-t  m) to the value A 0 (tin) in fo rmula  
(9), the d ivergence  is r educed  to a few percent .  

The concentra t ion  of the contaminant  f r o m  a high source  usually differs f r o m  ze ro  not iceably for  
dis tances  equal to a few t imes  the height.  For  x>> h fo rmula  (9) should be r ewr i t t en  in the f o r m  

2-'I, n ( h~u (t -- tmF 
c (x,  ~'l O, t) ~ m~4o(t~m~ (k jVykz) -V* e x p  - -  4kzX - -  2~ ~ ] 

In es t imat ing  the eff iciency of ae roso l  and ae rochemica l  analys is  perhaps  the impor tan t  quantity is 
not the concentra t ion i tself  but the dose de te rmined  by the following formula :  

D~ %dt (1 O) 
0 

The index w indicates  that the dose D and the concentra t ion c depend on the r a t e  of sed imenta t ion  of 
the pa r t i c l e s ,  i .e . ,  on the i r  s ize .  The density of the sediment ,  which is mos t  s imply  de t e rmined  in e x p e r i -  
ments  on sca t t e r ing  and turbidi ty  of the contaminant ,  is l inear ly  r e l a t ed  to the dose by v i r tue  of (3): 

; . .  = wD . ( i I )  

For  po lyd i spe rs ive  contaminants  Eqs.  (10) and (11) a re  in tegra ted  over  all  s izes :  
co 

0 0 

H e r e f  (w) is the dis tr ibut ion function of the r a t e  of sedimentat ion (over s izes) ,  n o r m a l i z e d  to unity. 
Thus all  the quanti t ies of i n t e re s t  can be ca lcula ted  if the express ion  for  the dose of monod i spe r s ive  a e r o -  
sol is known. Af ter  substi tut ing c w f rom (4) and (5) into (10) the express ion  for  the dose Dw is wr i t t en  in 
the following fo rm:  

QBI QwB~ 

Changing the o rde r  of in tegrat ion with r e s p e c t  to t and ~- and introducing the new va r i ab l e  

y -- U~ (t -- "0 -- v~ 
],/2kv'v 

i np l ace  of t ,  for  131 and B 2 we obtain the following expres s ions :  

2]/  ~k~ ~h ~ e-~e)Fo ,~-v~ y - z - ~  

V'-~., (13) 
B 2 =  U1 

r(x - -  u~) 2 u,2~ h ~ 

Here  l =Uit 1 is the path t r a v e r s e d  by the gene ra to r .  In the probabi l i ty  in tegral  occur r ing  outside 
the b r a c e s  in fo rmula  (13) the a rgumen t  is negative and takes the min imum value ~ .  I ts  absolute  
value i n c r e a s e s  with the pa r t i c l e  s ize  and the source  height.  Fo r  smal l  pa r t i c l e s  the second t e r m  in f o r -  
mula  (12) is smal l ,  s ince the fac tor  w occu r s  before  B 2. T h e r e f o r e  the probabi l i ty  in tegra l  may  be r e p l a c e d  

697 



by its  a sympto t ic  expansion without introducing signif icant  e r r o r s .  
we obtain 

The in tegra l s  occur r ing  in the exp re s s ions  for  B 1 and B 2 a re  evaluated by L a p l a c e ' s  method. It  is 
easy  to see that B 2 d i f fers  f r o m  131 by the fac tor  

"~nk V| (z~k z .q- h~k x) V" 

aV,(h_t_wvm) , ~m-- (u~k z ~W~kx)V, 

Here  ~'m is  the roo t  of the equation r  (? )=0 .  In p rac t i ce  the conditions 

( h / x ) ~ < ~ t ,  (w / u)2 , ~ i  

a re  usual ly sa t i s f ied  fa i r ly  well .  

In this case  Tm=X/u,  and a f t e r  substi tut ing B i and B 2 in fo rmula  (12),the expres s ions  for  the dose 
become 

Xw 2 

Taking the first term of this expansion, 

(14) 

Let  us compa re  the r e s u l t s  of computat ions  by these  fo rmu la s  with the avai lable  exper imen ta l  r e -  
sui ts .  Inves t iga t ions  of the d i spers ion  of a e ro so l  wave f r o m  a s t rong ae roso l  gene ra to r  have shown that  
m o r e  than 90% of the ae roso l  m a s s  is contained in drops  of l e s s  than 10 p m  in d i ame te r .  Since it follows 
f r o m  (14) that  pa r t i c l e s  of l e s s  than 10 g m  d i ame te r  for  a single compac tness  of the m a t t e r  fo rming  them 
a r e  p rac t i ca l ly  weight less ,  the cloud produced  by the gene ra to r  can a lso  be r e g a r d e d  as weight less .  

The axis  of the r eac t ive  nozzle of the gene ra to r  is located  a t  a height of about two m e t e r s  f r o m  the 
ground, but the cloud may e m e r g e  a t  a height  of a few tens of m e t e r s  due to its initial t e m p e r a t u r e  b e i n g  
higher than that  of the surrounding a i r .  When the height at which the cloud appea r s  does not exceed 10 m,  
at d is tances  m o r e  than 1 km f r o m  the line of motion of the genera to r  this ascent  can be neglected and the 
source  can be taken as located  on the ground. In this case  the dose of the imponderable  contaminant  mus t  
be max imum,  other  conditions being equal.  

F igure  2 shows the dependence of the dose on the dis tance for  an imponderable  contaminant  f r o m  a 
ground source  cor responding  to ave rage  conditions of the use  of the gene ra to r .  Plot ted along the ordinate 
is the quantity 

M = DwU1Q-qO a ([M] -- sec/m z) 

and along the a b s c i s s a  is the dis tance in k m  f r o m  the line of motion of the gene ra to r  and along the wind 
direct ion.  The m a x i m u m  doses  a t  d i s tances  of 1, 3, 6 km m e a s u r e d  during the expe r imen t s  a r e  shown 
by the dots.  The a g r e e m e n t  between the expe r imen ta l  r e su l t s  and the computat ion is sa t i s fac to ry .  

The r e su l t s  of computat ion by fo rmula  (11) for  the sediment  density (Pw mg/m2),  reduced to a single 
discharge (Q/U l =1 g / m ) ,  a re  p re sen ted  in Figs .  lb  and l c b y  the continuous cu rves  as  a function of the dis-  
tance (kin) to the line of mot ion of the gene ra to r  and a r e  compared  with exper imen ta l  points obtained in 
f ield conditions [12, 13]. 

In Fig.  l b  the open c i r c l e s  and curve  1 r e f e r  to pa r t i c l e s  with 50 #m d iamete r ;  the black c i r c l e s  and 
curve  2 r e f e r  to pa r t i c l e s  with 117 # m  d iame te r .  The value of k z was taken equal to 0 . 4 u , h  (u .  is  the f r i c -  
tion speed, roughly equal  to 0.2 wind speed  m e a s u r e d  at  a height of 2 m f r o m  the ground).  F o r  the ex p e r i -  
men t s  with a high source  (h=100 m),  for  which the r e su l t s  a r e  p r e sen t ed  in Fig. l e ,  the notation is the s a m e .  
The value k z =5 m2/ sec  was  e s t i m a t e d  f r o m  the posit ion of the m a x i m u m  sediment  density.  Consider ing 
the apprec iab le  s c a t t e r  of the r e s u l t s  of the f ie ld m e a s u r e m e n t s  of the sed iment  density,  which was com-  
puted f r o m  the number  of drops  deposi ted on g lass  pla tes  p laced at dif ferent  d is tances  [14], the a g r e e m e n t  
between the expe r imen ta l  and computat ional  r e s u l t s  should be cons idered  sa t i s fac to ry .  
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